US009075663B2

a2 United States Patent
Zhang et al.

(10) Patent No.:

(45) Date of Patent:

US 9,075,663 B2
Jul. 7, 2015

(54) CLOUD-BASED WEB WORKERS AND

STORAGES
(75) Inventors: Xinwen Zhang, San Jose, CA (US);
Simon J. Gibbs, San Jose, CA (US);
Anugeetha Kunjithapatham,
Sunnyvale, CA (US); Sangoh Jeong,
Palo Alto, CA (US)
(73) Assignee: Samsung Electronics Co., Ltd.,
Suwon-si (KR)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 999 days.
(21) Appl. No.: 12/778,846
(22) Filed: May 12, 2010
(65) Prior Publication Data
US 2011/0282940 A1 Nov. 17,2011
(51) Imt.ClL
GO6F 15/16 (2006.01)
GO6F 9/50 (2006.01)
GO6F 9/48 (2006.01)
(52) US.CL
CPC GO6F 9/5072 (2013.01); GO6F 9/4843
(2013.01)
(58) Field of Classification Search
USPC e 709/204
See application file for complete search history.
(56) References Cited

8,296,763 B1* 10/2012

U.S. PATENT DOCUMENTS

2003/0105810 Al*
2006/0224741 Al*
2006/0230149 Al*
2007/0143323 Al*

6/2003
10/2006
10/2006

6/2007

Jackson
Jackson
Vanrenen et al. 707/101

S

Main
Thread

202

Bi-directional format
Create—»

Manager

Web

Application
A

4
200

208
Cloud Platform

2009/0248693 Al* 10/2009 Sagaretal. 707/10
2010/0042720 Al* 2/2010 Stienhans etal. 709/226
2010/0131590 Al* 5/2010 Colemanetal. 709/203
2010/0274910 Al1* 10/2010 Ghanaie-Sichanie

etal. 709/229
2010/0318630 Al* 12/2010 Howell et al. .. 709/218
2010/0332818 Al* 12/2010 Prahladetal. 713/150
2011/0004916 Al* 1/2011 Schiffmanetal. 726/1
2011/0016214 Al* 1/2011 Jackson 709/226
2011/0161928 Al* 6/2011 Sangraetal. .. . 7177115
2011/0258692 Al* 10/2011 Morrison etal. 726/11
2012/0047239 Al* 2/2012 Donahueetal. 709/220
2012/0179808 Al* 7/2012 Bergkvist etal. 709/223
2012/0192197 Al* 7/2012 Doyleetal. 718/103

OTHER PUBLICATIONS

IBM White Paper “Cloud Computing” (2007) to Boss et al. (“Boss”);
http://download.boulder.ibm.com/ibmdl/pub/software/dw/wes/
hipods/Cloud__computing wp__final _ 8Oct.pdf.*

CCSW paper “Securing Elastic Applications on Mobile Devices for
Cloud Computing” (Nov. 13, 2009) to Zhang et al. (“Zhang”).*
OReilly book “Java Web services up and running” (publication date:
Feb. 12, 2009) to Kalin. (“Kalin”).*

(Continued)

Primary Examiner — June Sison
(74) Attorney, Agent, or Firm — Sherman IP LLP; Kenneth
L. Sherman; Hemavathy Perumal

(57) ABSTRACT

In accordance with one aspect of the invention, web workers
and local storages can be extended to a cloud-based environ-
ment. This allows web workers to be executed on any of a
number of different cloud platforms located in a cloud, lever-
aging available resources to provide a quicker and more effi-
cient processing environment for the various web workers.
The present invention also provides these functionalities in a
way that is transparent to not just the user, but also to the web
page developer as well, eliminating the need for the web page
developer to be aware of the cloud-based environment and
design the web page for use therewith.

18 Claims, 10 Drawing Sheets

~
_ Web
Worker,

208

Web
Worker

210

US 9,075,663 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

W3C specification “Web Workers” (publication date: Oct. 29, 2009)
to Hickson (“Hickson™).*

Balan et al., “The Case for Cyber Foraging”, ACM SIGOPS Euro-
pean Workshop, 2002, 6 pages.

Balan et al., “Tactics-Based Remote Execution for Mobile Comput-
ing”, 2003, 14 pages.

Sousaet al., “Aura: An Architectural Framework for User Mobility in
Ubiquitous Computing Environments”, IEEE/IFIP Working Conf.
on Software Architecture, 2002, pp. 1-13.

Chun et al., “Augmented Smartphone Applications Through Clone
Cloud Execution”, USENIX HotOS XII, 2009, pp. 1-5.

Gu et al., “Adaptive Offloading for Pervasive Computing”, IEEE
Pervasive Computing, vol. 3, No. 3, 2004, pp. 1-13.

Hunt et al., “The Coign Automatic Distributed Partitioning System”,
OSDI, 1999, 14 pages.

Rellermeyer et al., “R-OSGi: Distributed Applications Through Soft-
ware Modularization”, Middleware 2007, pp. 1-20.

Kozuch et al., “Internet Suspend/Resume”, IEEE WMCSA, 2002, 7
pages.

Travostino etal., “Seamless Live Migration of Virtual Machines Over
the MAN/WAN”, SC, 2006, .

Satyanarayanan et al., “The Case for VM-based Cloudlets in Mobile
Computing”, IEEE Pervasive Computing, vol. 8, No. 4, 2009, pp.
1-10.

Moshchuk et al., “Flashproxy: Transparently Enabling Rich Web
Content via Remote Execution”, Proc. Of MobiSys, 2008, 13 pages.

* cited by examiner

U.S. Patent

Jul. 7, 2015 Sheet 1 of 10
100 ,///
Web API
Worker Format Thread
Web Page
Browser

FIG. 1A

US 9,075,663 B2

102

U.S. Patent

Jul. 7, 2015 Sheet 2 of 10

" °l/~

Web [Server

106 /4

Web API Main
Worker Format Thread
110

A

Web Page

Browser

112

Local Data
Storage

FIG. 1B

US 9,075,663 B2

108

U.S. Patent Jul. 7, 2015

Sheet 3 of 10

US 9,075,663 B2

116

120
//

Web
Worker

114

W4

API
Format

API

Main /
Thread

Web Page
¥

Format\

Main
Thread /

Web Page

Browser

118

/ 122

FIG. 1C

U.S. Patent

Jul. 7, 2015 Sheet 4 of 10 US 9,075,663 B2
132
//
130 /4

Web
Worker

API Main
Format Thread

AP| Format
134

Web Page

128

FIG. 1D

U.S. Patent

Jul. 7, 2015

R
- Bi-directional format
Main
Create—»
Worker
202 Proxy
Manager
Web
Application 206
N A—
/V
Cloud Platform
200

Sheet 5 of 10

US 9,075,663 B2

FIG. 2

Create

Web
Worker

U.S. Patent Jul. 7, 2015
302
Web
Load Server
e ™
0
Main . reactional O
_directiont
Create—» Bi-di
Web Web
Worker Create Worker
300 Proxy
Manager
Web
_Application /
\. J

Cloud Platform

FIG. 3

Sheet 6 of 10

Fetch web
worker code

Web

Web
304 Worker,
Cloud Platform

US 9,075,663 B2

U.S. Patent Jul. 7, 2015 Sheet 7 of 10 US 9,075,663 B2

\ 0% it Server Fetchweb
4 P N ~
/ \ / worker code ~
Postmessage(), \
Thread /= Onmessage(); | wWorker Post Web
Bi-directi ostmessage() e
‘ Proxy i-directional format— | Onmessage() "\ Worker
k Manager !
410
400 Postmessage()
- Onmessage()
Web Postmessage() Cloud Platform
Application Onmessage()

Cloud Platform

404 FIG. 4

U.S. Patent

Jul. 7, 2015

/

FIG.5

Sheet 8 of 10

US 9,075,663 B2

4 0 h
Web \
Thread Web worker
Work . !
orker -directional format— Worker database Web
Proxy Proxy [; Worker,
Manager Manager operations
eb worker
database
Web worker operationg
openDBO) yatanase
DB.transactior operations
V_/ebl DB.transaction() Web
Application) Web Worker
508 Worker, Ty
________ Database storage replication_
and synchronization Database Cloud
502 506 Platform)
eloud Platform

Cloud

U.S. Patent

Jul. 7, 2015

Sheet 9 of 10

Receive a command to
invoke a web worker
from a web application
in a first API
communication format
at the first web worker
proxy manager

Remote Cloud Platform

On which
cloud platform should the
web worker be invoked

US 9,075,663 B2

Local Cloud Platform

600

602

606 Communicate with a second 604
web worker proxy manager

Invoke the

N

at a second cloud platform
remote to the first cloud

\ web worker

on the first
cloud platform

612

platform to cause the
invocation of the web worker
on the second cloud platform

Store an identification
of the web worker in
the table along with
information regarding

the location of the web

worker when invoked //

Create a
table

h 4

Implement identical
security policies on the

web worker as on the
web application

prd

610
v 608
Send confirmation of the[—=";
. . 614
invocation of the web
worker to the web End
browser in the first API
communication format FIG' 6

U.S. Patent Jul. 7, 2015

!

Receive a command
from a web application
in a first API
communication format,
wherein the command is
to access a first web
worker

/ Remote cloud platform

Sheet 10 of 10 U

Is the
first web
worker located on a
local cloud platform or a
remote cloud

platform
?

S 9,075,663 B2

Local cloud platform
A 4
706 Y
Send the command to a Send the command
second web worker proxy directly to the first
manager on a remote device web worker in the
in a communication format first API
other than the first API communication
communication format format
v 704
» End

FIG. 7

US 9,075,663 B2

1

CLOUD-BASED WEB WORKERS AND
STORAGES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to computer networking.
More specifically the present invention relates to cloud-based
web workers and storages.

2. Description of the Related Art

Today, numerous types of computing devices are available.
These computing devices widely range with respect to size,
cost, amount of storage and processing power. The computing
devices that are available today include expensive and pow-
erful servers, relatively cheaper Personal Computers (PC’s)
and laptops, and yet less expensive microprocessors (or com-
puter chips) provided in portable storage devices, automo-
biles, and household electronic appliances.

In recent years, computing systems have become more
portable and mobile. As a result, various mobile and handheld
devices have been made available. By way of example, wire-
less phones, media players, Personal Digital Assistants
(PDA’s) are widely used today. Generally, a mobile or a
handheld device (also known as handheld computer or simply
handheld) can be a pocket-sized computing device, typically
utilizing a small visual display screen for user output and a
miniaturized keyboard for user input. In the case of a Personal
Digital Assistant (PDA), the input and output can be com-
bined into a touch-screen interface.

In particular, mobile communication devices (e.g., mobile
phones) have become extremely popular. Some mobile com-
munication devices (e.g., Smartphones) offer computing
environments that are similar to that provided by a Personal
Computer (PC). As such, a Smartphone can effectively pro-
vide a complete operating system as a standardized interface
and platform for application developers.

Smartphones, along with other computer systems, often
run web browsers. A web browser is a software application
for retrieving, presenting, and traversing information
resources on the World Wide Web. Some modern smart-
phones, however, extend the use of web browsers to not only
resources on the World Wide Web but to all resources avail-
able to the phone, making the web browser an integral part of
the operating system of the smartphone.

Hypertext Markup Language (HTML) is the standard
markup language used to create web pages on the world wide
web. HTMLS is being proposed by the World Wide Web
Consortium (W3C) as a major revision to HTML. Although
the HTMLS5 specification has been under development since
2004, many features of HTML are supported by the latest
builds of modern browsers, such as WebKit, Firefox, and
Opera.

Included in the HTMLS5 specification are the concepts of
web workers and local storages. A web worker is a script that
runs in the background within the browser, independently of
any user interface scripts. This allows for long-running scripts
that are not interrupted by scripts that respond to clicks or
other user interactions, and allows long tasks to be executed
without yielding, to keep the web page responsive.

The popularity of computing systems is evidenced by their
ever increasing use in everyday life. Accordingly, techniques
that can improve computing systems would be very useful.

SUMMARY OF THE INVENTION

Broadly speaking, the invention relates to computing sys-
tems and computing environments. More specifically the
present invention relates to cloud-based web workers and
storages.

10

40

45

50

2

In accordance with one aspect of the invention, web work-
ers and local storages can be extended to a cloud-based envi-
ronment. This allows web workers to be executed on any of a
number of different cloud platforms located in a cloud, lever-
aging available resources to provide a quicker and more effi-
cient processing environment for the various web workers.
The present invention also provides these functionalities in a
way that is transparent to not just the user, but also to the web
page developer as well, eliminating the need for the web page
developer to be aware of the cloud-based environment and
design the web page for use therewith.

In accordance with another embodiment of the invention, a
web worker’s local storage can be shared with the main thread
of'aweb application (as well as other web workers) to provide
a common storage area for all processes of the web applica-
tion.

The present invention enables web workers to work trans-
parently in a cloud. This might include any type of cloud
platform, such as a private cloud (home or enterprise) or a
public cloud. In order to transparently support this, one aspect
of the present invention provides the ability for web workers
to communicate with a web page’s main thread through exist-
ing application program interfaces (APIs), via traditional
message-based communication channels. This aspect of the
present invention also allows web workers to communicate
with each other no matter whether they are local (on the same
device) or remote (on different devices). This aspect of the
present invention additionally allows web works to access
local database storage with existing APIs, as well as to access
external web servers. Furthermore, one aspect of the present
invention causes the web worker to comply with the same
security policies as it would if it were running in the main
thread or the web page.

In order to provide the above-described functionality, one
or more web worker proxy managers can be provided
throughout the cloud platform. In one embodiment of the
present invention, each cloud platform contains one web
worker proxy manager. However, it should be noted that it is
not mandatory for each cloud platform to contain a proxy
manager. In some embodiments, for example, only cloud
platforms on which a web worker has been spawned will
include a web worker proxy manager. In another embodi-
ment, web worker proxy managers are only necessary for
communications to a remote web worker, and thus a web
worker proxy manager is only located on cloud platforms that
have spawned web workers that need to communicate with
remote web workers.

The invention can be implemented in numerous ways,
including, for example, a method, an apparatus, a computer
readable (and/or storable) medium, and a computing system
(e.g., acomputing device). A computer readable medium can,
for example, include and/or store at least executable com-
puter program code stored in a tangible form. Several
embodiments of the invention are discussed below.

Other aspects and advantages of the invention will become
apparent from the following detailed description, taken in
conjunction with the accompanying drawings, illustrating by
way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the
following detailed description in conjunction with the accom-
panying drawings, wherein like reference numerals designate
like structural elements, and in which:

US 9,075,663 B2

3

FIG. 1A shows a background worker of a main thread of a
web page.

FIG. 1B shows another background worker of a main
thread of a web page.

FIG. 1C shows a shared worker, which is shared between
two main threads.

FIG. 1D shows delegated workers of a worker.

FIG. 2 is a block diagram illustrating a cloud-based web
worker system in accordance with an embodiment of the
present invention.

FIG. 3 is a block diagram illustrating a cloud-based web
worker system in accordance with another embodiment of the
present invention.

FIG. 4 is a diagram illustrating message flow at runtime of
a cloud-based web worker system in accordance with an
embodiment of the present invention.

FIG. 5 is a diagram illustrating message flow at runtime of
a cloud-based web worker system having local storages in
accordance with another embodiment of the present inven-
tion.

FIG. 6 is a flow diagram illustrating a method for operating
a first cloud platform in accordance with an embodiment of
the present invention.

FIG. 7 is a flow diagram illustrating a method for operating
afirst cloud platform in accordance with another embodiment
of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to specific embodi-
ments of the invention including the best modes contemplated
by the inventors for carrying out the invention. Examples of
these specific embodiments are illustrated in the accompany-
ing drawings. While the invention is described in conjunction
with these specific embodiments, it will be understood that it
is not intended to limit the invention to the described embodi-
ments. On the contrary, it is intended to cover alternatives,
modifications, and equivalents as may be included within the
spirit and scope of the invention as defined by the appended
claims. In the following description, specific details are set
forth in order to provide a thorough understanding of the
present invention. The present invention may be practiced
without some or all of these specific details. In addition, well
known features may not have been described in detail to avoid
unnecessarily obscuring the invention.

In accordance with the present invention, the components,
process steps, and/or data structures may be implemented
using various types of operating systems, programming lan-
guages, computing platforms, computer programs, and/or
general purpose machines. In addition, those of ordinary skill
in the art will recognize that devices of a less general purpose
nature, such as hardwired devices, field programmable gate
arrays (FPGAs), application specific integrated circuits
(ASICs), or the like, may also be used without departing from
the scope and spirit of the inventive concepts disclosed herein.
The present invention may also be tangibly embodied as a set
of computer instructions stored on a computer readable
medium, such as a memory device.

The present invention involves extending the concept of
web workers and local storage to a cloud-based environment.
This allows web workers to be executed on any of a number of
different cloud platforms, leveraging available resources to
provide a quicker and more efficient processing environment
for the various web workers. The present invention also pro-
vides these functionalities in a way that is transparent to not
just the user, but also to the web page developer as well,

10

20

30

40

45

4

eliminating the need for the web page developer to be aware
of the cloud-based environment and design the web page for
use therewith.

Cloud computing involves the sharing of resources across
multiple devices, usually through the Internet or other net-
work (termed the “cloud”). Shared resources, software and
information can then be provided to computers and other
devices on-demand, like a public utility. The sharing devices
may be other devices operated by the same user, or may be
controlled more generally, such as by an Internet Service
Provider (ISP) or cell phone network subscribed to by the
user.

As described in the background section, a web worker is a
script that runs in the background within the browser (or other
web application), independently of any user interface scripts.
This allows, for example, multiple Javascript scripts to be run
in parallel on a web page, without blocking the user interface.
Typically, a web worker is an independent browser execution
context (thread or process) that can run from any web page,
and can additionally run in the background and talk with the
web page that creates it via dedicated message channels. A
web worker can also talk with web servers directly via com-
mon communication methods (e.g., XMLHttpRequest, Web-
socket). A web worker can also store data persistently in local
data storages.

FIGS. 1A-1D are diagrams illustrating multiple different
web worker embodiments. FIG. 1A shows a background
computation worker 100 of a main thread 102 of a web page
104. A background computation worker is a web worker
designed to provide background computations for the main
thread 102 to take some of the load off the main thread 102. It
may communicate with the main thread 102 via a postmes-
sage() or onmessage() command (via an API).

FIG. 1B shows a background worker 106 of a main thread
108 of a web page 110. The difference between background
worker 106 of FIG. 1B and background computation worker
100 of FIG. 1A is that background worker 106 accesses its
own local data storage 112. It should be noted that despite
these examples being depicted in different figures, there is no
major division between the types of web workers. In other
words, any web worker could perform background computa-
tions and/or access its own local data storage.

FIG. 1C shows a shared worker 114, which is shared
between main threads 116, 118 of multiple web pages 120,
122. In this way, it is not necessary to design or spawn mul-
tiple worker processes when one can do and be shared among
multiple main threads.

FIG. 1D shows delegated workers 124, 126, 128 of worker
130. Here, worker 130 is designed to be a background worker
for main thread 132 of web page 134, but worker 130 can
itself spawn its own set of workers 124, 126, and 128 (which
may also be known as sub-workers) to aid in its processes.

As stated earlier, the figures above are merely examples of
specific actions that can be undertaken by web workers. These
examples may be mixed and matched in any permutation, to
provide arich environment for the delegation of tasks in many
different ways.

It should also be noted that while the present disclosure
describes the use of the invention with web workers from web
browsers, nothing prohibits the invention from being applied
to other web applications using web workers. As such, noth-
ing in this disclosure shall be construed as limiting the scope
of the claims to web browsers, unless so expressly stated.

While web workers run in independent browser contexts
and can access local storages, they cannot access global vari-
ables or the Document Object Model (DOM) tree from the
main thread of the web page. Additionally, as accessing the

US 9,075,663 B2

5

main thread’s local storage is performed only through global
variables, a web worker cannot access a main thread’s local
storage. Despite these limitations, however, an embodiment
of the present invention allows for a workaround, wherein a
web worker’s local storage can be shared with the main thread
of the web page (as well as among other web workers) to
provide a common storage area for all processes of a web
page.

In one example of the workaround solution, the local data
storage accessible by the web workers can include a client
application, such as a Structured Query Language (SQL)
database, which can store application-specific data. One of
ordinary skill in the art will recognize, however, that the
shared data can be stored in many different types of databases
and/or storage applications, and thus the present invention
should not be limited to SQL databases. This allows the web
worker to share data storage with other web workers and/or
the main thread.

It should also be noted that, while currently only local data
storage is available to be accessed by workers, in the future
that limitation may be eased or eliminated, thus negating the
need for this workaround solution, and the present invention
shall be construed to cover such future embodiments as well.

The present invention enables web workers to work trans-
parently in a cloud platform. This might include any type of
cloud platform, such as a private cloud (home or enterprise) or
a public cloud. In order to transparently support this, one
aspect of the present invention provides the ability for web
workers to communicate with a web page’s main thread
through existing application program interfaces (APIs), via
traditional message-based communication channels. This
aspect of the present invention also allows web workers to
communicate with each other no matter whether they are
local (on the same device) or remote (on different devices).
This aspect of the present invention additionally allows web
works to access local database storage with existing APIs, as
well as to access external web servers. Furthermore, as will be
described later, one aspect of the present invention causes the
web worker to comply with the same security policies as it
would if it were running in the main thread or the web page.

In order to provide the above-described functionality, one
ormore web worker proxy managers are provided throughout
the cloud. In one embodiment of the present invention, each
cloud platform contains one web worker proxy manager.
However, it should be noted that it is not mandatory for each
cloud platform to contain a proxy manager. In some embodi-
ments, for example, only cloud platforms on which a web
worker has been spawned will include a web worker proxy
manager. In another embodiment, web worker proxy manag-
ers are only necessary for communications to a remote web
worker, and thus a web worker proxy manager is only located
on client platforms that have spawned web workers that need
to communicate with remote web workers.

FIG. 2 is a block diagram illustrating a cloud-based web
worker system in accordance with an embodiment of the
present invention. Here, web application 200 contains main
thread 202, which invokes web worker 204. Rather than this
invocation occurring directly, however, web worker proxy
manager 206 is provided that receives the request from the
main thread 202 to invoke the web worker and performs the
invocation. This allows the web worker to be invoked on any
cloud platform in the cloud, as the web worker proxy manager
206 can elect to invoke the web worker 204 locally, as
depicted in FIG. 2, or may elect to invoke web worker
remotely, such as web worker 208 or web worker 210. Here,
web worker 208 is invoked remotely by the web worker proxy

20

30

40

45

50

6

manager 206, possibly including the involvement of a remote
web worker proxy manager 212.

Thus, whenever the main thread of a web application, such
as a loaded web page with HTML script, invokes a web
worker, it can send the request to the web worker proxy
manager 206, which decides where to launch the web worker
(on the same browser environment of the device or on a
cloud). In one embodiment of the present invention, the web
worker proxy manager is implemented via a browser plug in
or an internal component of the web application. In another
embodiment of the present invention, the web worker proxy
manager is a separate, specialized web worker. The web
worker proxy manager 206 can provide the same web worker
message APIs as were used previously, thus preserving the
transparency of the system to both the users and the web page
developers.

In an embodiment of the present invention, the web worker
proxy manager 206 checks security policies on launching a
web worker. For example, the proxy manager 206 may follow
a same-origin policy (SOP) so that a web worker can only be
accessed by resources sharing the same origin as would be
permitted by the main thread 202. A web worker may only be
invoked if it passes all these security checks. This helps to
ensure that the web worker is not invoked in a such a way that
would be contrary to the security policies of the main thread,
which would obviously cause the processes to be less than
transparent.

In another aspect of the present invention, the web worker
proxy manager may maintain a table with each loaded web
page. The table may include the information of all active web
worker names (accessed by the main thread in the web page),
as well as other information relevant to communicating with
the web workers, such as uniform resource locators (URLs) if
they are running in a cloud, or message ports if running
locally.

The web worker proxy manager decides where to launch
the targeted web worker. If it launches the web worker locally,
it invokes the web worker with parameters identified by the
main thread, and can then update its table with the related
information regarding the launched web worker.

If the web worker proxy manager decides to launch the
target web worker remotely, it can file a request with a remote
web worker proxy manager. This request may include the
parameters identified by the main thread, as well as the code
of the web worker. The remote web worker proxy manager
may then arrange necessary resources (e.g., core, storage) and
launch the web worker with the transferred parameters.

The remote web worker proxy manager can send informa-
tion on the web worker URL once it is launched, to the local
web worker proxy manager, which can then add it to its table.
After this has been configured, the main thread and the
invoked web worker(s) can talk to each other with existing
message-based web worker APIs.

It should be noted that it is not necessary for the code of the
web worker to be transferred directly from the local web
worker proxy manager to the remote web worker proxy man-
ager. Embodiments are possible where the remote web
worker proxy manager obtains a copy of the web worker code
via other methods. FIG. 3 is a block diagram illustrating a
cloud-based web worker system in accordance with another
embodiment of the present invention. Here, main thread 300
is obtained from a web server 302, and remote web worker
proxy manager 304 obtains web worker code directly from
the web server 302, via, for example, a fetch command upon
receiving a request from the remote web worker proxy man-
ager 304 to invoke a web worker.

US 9,075,663 B2

7

The above description illustrates the concept of cloud-
based computing in a broad manner. However, more special-
ized mechanisms are possible in certain embodiments of the
present invention. In one embodiment, an elastic-based com-
puting system is utilized to aid in the decision-making pro-
cess by the web worker proxy managers. Elastic-based com-
puting allows for external computing resources to be utilized
(or not utilized) by decisions made at execution-time. As a
result, a computing system may function with relatively lim-
ited computing resources (e.g., processing power, memory)
but have the ability to effectively provide as much computing
services as may be needed and provide the services when
needed, on demand, and dynamically, during the execution
time.

In such a system, a computing system (e.g., a computing
device) can be operable to determine, during runtime of
executable computer code, whether to execute (or continue to
execute) one or more portions of the executable computer
code by effectively using a dynamically scalable computing
resource as an external computing resource. The computing
system can determine the relative extent of allocation of
execution of the executable computer code between internal
computing resources and the external computing resources of
the dynamically scalable computing resource in a dynamic
manner at runtime (e.g., during load time, after load time
before execution time, execution time) and allocate the
execution accordingly.

It should be noted that the computing device can be oper-
able to use a dynamically scalable resource as an abstract
resource. By way of example, an Abstract and Dynamically
Scalable Computing Resource (ADSCR) can be accessed
using an abstract interface. Those skilled in the art will appre-
ciate that the ADSCR, can for example, be a “Cloud” com-
puting resource operable to deliver dynamically scalable
computing resources via an abstract interface as Web-ser-
vices over the Internet.

It will also be appreciated that the elastic computing sys-
tem can be operable to determine, during the runtime of the
executable computer code, whether to execute or continue to
execute one or more portions of the executable computer code
by effectively using the ADSCR, thereby dynamically deter-
mining during runtime, relative extent of allocation of execu-
tion of the executable computer code between the internal
computing resources of the computing system and external
computing resources of the ADSCR. Based on this determi-
nation of relative extent of allocation of execution, the elastic
computing system can also be operable to effectively use the
one or more external resources of the ADSCR for execution of
one or more portions of the executable computer code. In
other words, the elastic computing system can cause the
execution of one or more portions of the executable computer
code when it determines to execute one or more portions of
the executable computer code by effectively using one or
more of the external resources available to the ADSCR.

It should also be noted that determination of the relative
extent of allocation of execution of the executable computer
code can be performed by the elastic computing system,
without requiring user input, thereby automatically determin-
ing the relative extent of allocation of execution of the execut-
able computer code between said one or more internal com-
puting resources and one or more external resources.
However, it should be noted that the elastic computing system
may be operable to make this determination based on one or
more preferences that can, for example, be provided as a set of
predetermined user-defined preferences (e.g., minimize
power or battery usage, use internal resources first, maximize
performance, minimize monetary cost). The elastic comput-

10

15

20

25

30

35

40

45

50

55

60

65

8

ing system may also be operable to make the determination of
the relative extent of allocation of execution of the executable
computer code based on input explicitly provided by a user at
runtime. By way of example, the elastic computing system
may be operable to request user input and/or user confirma-
tion prior to allocation of execution to the ADSCR.

This determination can, for example, be made based on one
ormore capabilities such as the internal computing resources,
monetary cost associated with using the external resources,
expected and/or expectable latency for delivering services by
the external resources, network bandwidth for communica-
tion with the ADSCR, status of one or more physical
resources, battery power of the computing system, one or
more environmental factors, physical location of the comput-
ing system, number and/or types of applications being
executed on the computing system, and type of applications
to be executed.

The elastic computing aspect may also be implemented
using a cost model. In a cost model, different sensor data is
obtained from devices on a cloud. This sensor data can be any
information that may be helpful in determining on which
cloud platform to invoke a web worker. This sensor informa-
tion can then be fed into a model, which acts to return an
indication of which cloud platform to use. This may also
involve the use ofa cost service, which cloud platforms which
parameters are monitored/measured by cloud-side and cloud
platform side, for example, data communication and network
status can be measured on cloud-side, while execution power
cost of cloud platform can be on the cloud platform-side.

FIG. 4 is a diagram illustrating message flow at runtime of
a cloud-based web worker system in accordance with an
embodiment of the present invention. Web worker proxy
managers 400, 402 route and relay messages between web
workers 404, 406, 408 and main thread 410. It should be noted
that in some embodiments a web worker proxy manager is
utilized for communication between web workers on the
same cloud platform. However, in another embodiment, web
workers located on the same cloud platform can interact
directly without the need of a web worker proxy manager.
However, a web worker proxy manager is still desired to be
placed on such cloud platforms in order to enable communi-
cations with web workers/main threads located on other
cloud platforms.

All communications among web workers and between web
workers and web worker proxy managers may be performed
through traditional APIs, such as HTMLS5 APIs, thus making
the system transparent to both the users and developers. Com-
munications between web worker proxy managers 400, 402,
however, may be conducted via a bidirectional message based
communication that need not be in a traditional API format.
This communication may be conducted in a proprietary for-
mat if desired, without having any eftect on the transparency
of'the system. Alternatively, a web socket API can be used for
the bidirectional message based communication.

Local storage may be handled in a similar manner. FIG. 5
is a diagram illustrating message flow at runtime of a cloud-
based web worker system having local storages in accordance
with another embodiment of the present invention. Here web
worker proxy manager 500 is able to access local database
502, while web worker proxy manager 504 is able to access
local database 506. When a web worker 508 invokes APIs to
access the database, such as an openDB() command, the web
worker proxy manager 500 can check both the local and cloud
side to determine whether the target database exists. If not, the
database is created locally (locally to the invoking web
worker) and database transactions are performed as usual,
such as with DB.transaction() commands. If the database has

US 9,075,663 B2

9

already been created, the web worker proxy manager 500
routes the message to the corresponding database, either on
the local or cloud side. Thus, although a database 506 may be
located on the cloud, it would work just like a local storage to
cloud platform web workers, such as web worker 508.

In another embodiment of the present invention, databases
ondifferent cloud platforms can be replicated and/or synchro-
nized in order to maintain the same database on different
cloud platforms. This would allow, for example, all database
commands to be executed locally, saving network bandwidth.

FIG. 6 is a flow diagram illustrating a method for operating
a first cloud platform in accordance with an embodiment of
the present invention. This method is performed at the time a
web application requests that a web worker be invoked. This
method may be performed by a first web worker proxy man-
ager. At 600, a command from a web application in a first API
communication format is received at the first web worker
proxy manager. The command is to invoke a web worker. At
602, it is determined on which cloud platform to invoke the
web worker. This determination may be performed in a num-
ber of different ways. In one embodiment, it includes utilizing
information regarding capabilities of the first cloud platform
and the second cloud platform to determine the most appro-
priate cloud platform on which to invoke the web worker. It
may also include using a cost model to evaluate current sensor
data from the first and second cloud platforms. At 604, the
web worker is invoked on the first cloud platform (i.e.,
locally) if it is determined to invoke the web worker on the
first cloud platform. At 606, the first web worker proxy man-
ager communicates with a second web worker proxy manager
at a second cloud platform remote to the first cloud platform
to cause the invocation of the web worker on the second cloud
platform if it is determined to invoke the web worker on the
second cloud platform. This communication may be per-
formed via a communication format other than the first API
communication format. This may include sending code for
the web worker to the second web worker proxy manager
during the communicating. Alternatively, the second web
worker proxy manager can obtain the code on its own.

At 608, identical security policies (e.g., same origin policy)
may be implemented on the web worker as on the web appli-
cation. At 610, a table may be created and at 612 an identifi-
cation of the web worker can be stored in the table along with
information regarding the location of the web worker when
invoked. It should be noted that step 610 need not be per-
formed if a table has previously been created. The informa-
tion regarding the location of the web worker when invoked
can include a message port if the web worker is located on the
first cloud platform (i.e., locally) and a URL if the web worker
is located on the second cloud platform (i.e., remotely). At
614, confirmation of the invocation of the web worker may be
sent to the web application in the first AP] communication
format.

FIG. 7 is a flow diagram illustrating a method for operating
afirst cloud platform in accordance with another embodiment
of'the present invention. This method is performed at the time
a web application sends a command to an existing web
worker. This method may be performed by a first web worker
proxy manager. At 700, a command from a web application in
a first API communication format is received at the first web
worker proxy manager, wherein the command is to access a
first web worker. At 702, it is determined if the first web
worker is located on the first cloud platform or a remote cloud
platform. At 704, the command is sent directly to the first web
worker in the first AP] communication format if the web
worker is located on the first cloud platform (i.e., locally). At
706, the command is sent to a second web worker proxy

10

15

20

25

30

35

40

45

50

55

60

65

10

manager on a remote cloud platform in a communication
format other than the first API communication format if the
first web worker is located on the remote cloud platform.

The various aspects, embodiments, implementations or
features of the described embodiments can be used separately
or in any combination. Various aspects of the described
embodiments can be implemented by software, hardware or a
combination of hardware and software. The described
embodiments can also be embodied as computer readable
code on a computer readable medium. The computer readable
medium is defined as any data storage device that can store
data which can thereafter be read by a computer system.
Examples of the computer readable medium include read-
only memory, random-access memory, CD-ROMs, DVDs,
magnetic tape, and optical data storage devices. The com-
puter readable medium can also be distributed over network-
coupled computer systems so that the computer readable code
is stored and executed in a distributed fashion.

The various aspects, features, embodiments or implemen-
tations of the invention described above can be used alone or
in various combinations. The many features and advantages
of'the present invention are apparent from the written descrip-
tion and, thus, it is intended by the appended claims to cover
all such features and advantages of the invention. Further,
since numerous modifications and changes will readily occur
to those skilled in the art, the invention should not be limited
to the exact construction and operation as illustrated and
described. Hence, all suitable modifications and equivalents
may be resorted to as falling within the scope of the invention.

What is claimed is:

1. A method, comprising:

receiving, at a first web worker proxy manager at a first

cloud platform, a first command from a web application
to invoke a web worker;
determining a cloud platform of multiple cloud platforms
to invoke the web worker on, wherein the multiple cloud
platforms include the first cloud platform and a second
cloud platform remote to the first cloud platform;

invoking the web worker on the cloud platform determined
upon determining that the web worker complies with
one or more security policies of the web application;

sending confirmation of invocation of the web worker to
the web application upon invoking the web worker on
the cloud platform determined;

maintaining a table; and

storing an identification of the web worker in the table

along with information regarding location of the web
worker upon invoking the web worker on the cloud
platform determined;

wherein the first web worker proxy manager is configured

to communicate with a second web worker proxy man-
ager at the second cloud platform to cause invocation of
the web worker on the second cloud platform when the
cloud platform determined is the second cloud platform,
and wherein the second web worker proxy manager is
configured to determine and allocate at least one com-
puting resource of the second cloud platform for the web
worker based on communication from the first web
worker proxy manager; and

wherein the first web worker proxy manager is further

configured to receive a second command from the web
application or another web worker.

2. The method of claim 1, wherein:

the first web worker proxy manager is further configured to

communicate to the second web worker proxy manager
a request to invoke the web worker on the second cloud
platform, wherein the second web worker proxy man-

US 9,075,663 B2

11

ager determines and allocates at least one computing
resource of the second cloud platform for the web
worker based on one or more parameters included in the
request.
3. The method of claim 1, wherein:
the web worker comprises a script that runs within a
browser environment when the web worker is invoked;

the information regarding the location of the web worker
includes a message port if the cloud platform determined
is the first cloud platform; and

the information regarding the location of web worker

includes a uniform resource locator (URL) if the cloud
platform determined is the second cloud platform.

4. The method of claim 1, further comprising implement-
ing the one or more security policies on the web worker.

5. The method of claim 4, wherein the one or more security
policies include a same origin policy (SOP).

6. The method of claim 1, wherein determining a cloud
platform of multiple cloud platforms to invoke the web
worker on comprises utilizing information regarding capa-
bilities of the first cloud platform and the second cloud plat-
form to determine which cloud platform of the multiple cloud
platforms is most appropriate to invoke the web worker on.

7. The method of claim 1, wherein determining a cloud
platform of multiple cloud platforms to invoke the web
worker on comprises utilizing a cost model to evaluate current
sensor data from the first cloud platform and the second cloud
platform.

8. The method of claim 1, further comprising:

receiving a command to access the web worker;

determining if the web worker is located on the first cloud

platform or the second cloud platform;

sending a command to access the web worker directly to

the web worker in a first application program interface
(API) communication format if the web worker is
located on the first cloud platform; and

sending a command to access the web worker to the second

web worker proxy manager in a communication format
other than the first API communication format if the web
worker is located on the second cloud platform.

9. The method of claim 1, wherein the second web worker
proxy manager retrieves code for the web worker directly
from a web server.

10. The method of claim 1, further comprising sending
code for the web worker to the second web worker proxy
manager when the cloud platform determined is the second
cloud platform.

11. A method, comprising:

receiving, at a first web worker proxy manager at a first

cloud platform, a first command from a web application
to access a first web worker; and

determining if the first web worker is located on the first

cloud platform or a remote cloud platform;
wherein the first web worker is invoked on one of the first
cloud platform and the remote cloud platform upon
determining that the first web worker complies with one
or more security policies of the web application;

wherein confirmation of invocation of the first web worker
is sent to the web application when the first web worker
is invoked on one of the first cloud platform and the
remote cloud platform;

wherein a table is maintained;

wherein an identification of the first web worker is stored in

the table along with information regarding location of
the first web worker when the first web worker is invoked
on one of the first cloud platform and the remote cloud
platform;

10

15

20

25

30

35

40

45

50

55

60

65

12

wherein the first web worker proxy manager is configured
to send the first command to access the first web worker
directly to the first web worker upon determining that the
first web worker is located on the first cloud platform;
wherein the first web worker proxy manager is further
configured to send the first command to access the first
web worker to a second web worker proxy manager on
the remote cloud platform in a communication format
other than the first APl communication format upon
determining that the first web worker is located on the
remote cloud platform; and
wherein the first web worker proxy manager is further
configured to receive a second command from the web
application or another web worker.
12. The method of claim 11, further comprising:
receiving, at a first web worker proxy manager at the first
cloud platform, a command from a second web worker
to access a database in a first application program inter-
face (API) communication format; and
determining if the database is located on the first cloud
platform or on the second cloud platform;
sending a command to access the database directly to the
database in the first APl communication format upon
determining that the database is located on the first cloud
platform; and
sending a command to access the database to the second
web worker proxy manager in a communication format
other than the first APl communication format upon
determining that the database is located on the second
cloud platform.
13. The method of claim 12, further comprising:
synchronizing the database with another database.
14. A cloud platform comprising:
a memory;
an interface;
a processor in communication with the memory;
the memory storing a web worker proxy manager execut-
able by the processor to:
receive a first command from a web application to be
executed by a first web worker stored in memory; and
determine whether the first web worker is located on the
cloud platform or on a remote cloud platform;
wherein the first web worker is executed on one of the
first cloud platform and the remote cloud platform
upon determining that the first web worker complies
with one or more security policies of the web appli-
cation;
wherein confirmation of execution of the first web
worker is sent to the web application when the first
web worker is executed on one of the first cloud plat-
form and the remote cloud platform;
wherein a table is maintained;
wherein an identification of the first web worker is stored
in the table along with information regarding location
of the first web worker when the first web worker is
executed on one of the first cloud platform and the
remote cloud platform;
wherein the first command to be executed by the first
web worker is sent directly to the first web worker
upon determining that the first web worker is located
on the cloud platform;
wherein the first command to be executed by the first
web worker is sent to a remote web worker proxy
manager stored in memory at the remote cloud plat-
form upon determining that the first web worker is
located on the remote cloud platform; and

US 9,075,663 B2

13

wherein the web worker proxy manager receives a sec-
ond command from the web application or another
web worker stored in memory.
15. An apparatus, comprising:
a processor in communication with memory storing a first
web worker proxy manager executable by the processor
for:
receiving a first command from a web application to
execute a web worker stored in memory;

determining a cloud platform of multiple cloud plat-
forms to execute the web worker on, wherein the
multiple cloud platforms include the first cloud plat-
form and a second cloud platform remote to the first
cloud platform;

executing the web worker on the cloud platform deter-
mined upon determining that the web worker com-
plies with one or more security policies of the web
application;

sending confirmation of execution of the web worker to
the web application upon executing the web worker
on the cloud platform determined;

maintaining a table; and

storing an identification of the web worker in the table
along with information regarding location of the web
worker upon executing the web worker on the cloud
platform determined;

wherein the first web worker proxy manager communi-
cates with a second web worker proxy manager stored
in memory at the second cloud platform to cause
execution of the web worker on the second cloud
platform when the cloud platform determined is the
second cloud platform, and wherein the second web
worker proxy manager determines and allocates at
least one computing resource of the second cloud
platform for the web worker based on communication
from the first web worker proxy manager; and

wherein the first web worker proxy manager receives a
second command from the web application or another
web worker stored in memory.
16. An apparatus, comprising:
a processor in communication with memory storing a first
web worker proxy manager executable by the processor
for:
receiving a first command from a web application to
access a first web worker stored in memory; and

determining if the first web worker is located on the first
cloud platform or a remote cloud platform;

wherein the first web worker is executed on one of the
first cloud platform and the remote cloud platform
upon determining that the first web worker complies
with one or more security policies of the web appli-
cation;

wherein confirmation of execution of the first web
worker is sent to the web application when the first
web worker is executed on one of the first cloud plat-
form and the remote cloud platform;

wherein a table is maintained;

wherein an identification of the first web worker is stored
in the table along with information regarding location
of the first web worker when the first web worker is
executed on one of the first cloud platform and the
remote cloud platform;

wherein the first web worker proxy manager sends the
first command to access the first web worker directly
to the first web worker upon determining that the first
web worker is located on the first cloud platform;

10

20

25

30

40

45

50

55

60

65

14

wherein the first web worker proxy manager sends the
first command to access the first web worker to a
second web worker proxy manager stored in memory
on the remote cloud platform upon determining that
the first web worker is located on the remote cloud
platform; and
wherein the first web worker proxy manager receives a
second command from the web application or another
web worker stored in memory.
17. A computer program product comprising a computer-

readable hardware storage medium having program code
embodied therewith, the program code being executable by a
computer to implement a method, the method comprising:

receiving, at a first web worker proxy manager at a first
cloud platform, a first command from a web application
to invoke a web worker;

determining a cloud platform of multiple cloud platforms
to invoke the web worker on, wherein the multiple cloud
platforms include the first cloud platform and a second
cloud platform remote to the first cloud platform;

invoking the web worker on the cloud platform determined
upon determining that the web worker complies with
one or more security policies of the web application;

sending confirmation of invocation of the web worker to
the web application upon invoking the web worker on
the cloud platform determined;

maintaining a table; and

storing an identification of the web worker in the table
along with information regarding location of the web
worker upon invoking the web worker on the cloud
platform determined;

wherein the first web worker proxy manager is configured
to communicate with a second web worker proxy man-
ager at the second cloud platform to cause invocation of
the web worker on the second cloud platform when the
cloud platform determined is the second cloud platform,
and wherein the second web worker proxy manager is
configured to determine and allocate at least one com-
puting resource of the second cloud platform for the web
worker based on communication from the first web
worker proxy manager; and

wherein the first web worker proxy manager is further
configured to receive a second command from the web
application or another web worker.

18. A computer program product comprising a computer-

readable hardware storage medium having program code
embodied therewith, the program code being executable by a
computer to implement a method, the method comprising:

receiving, at a first web worker proxy manager at the first
cloud platform, a first command from a web application
to access a first web worker; and

determining if the first web worker is located on the first
cloud platform or a remote cloud platform;

wherein the first web worker is invoked on one of the first
cloud platform and the remote cloud platform upon
determining that the first web worker complies with one
or more security policies of the web application;

wherein confirmation of invocation of the first web worker
is sent to the web application when the first web worker
is invoked on one of the first cloud platform and the
remote cloud platform;

wherein a table is maintained;

wherein an identification of the first web worker is stored in
the table along with information regarding location of
the first web worker when the first web worker is invoked
on one of the first cloud platform and the remote cloud
platform;

US 9,075,663 B2

15

wherein the first web worker proxy manager is configured
to send the first command to access the first web worker
directly to the first web worker upon determining that the
first web worker is located on the first cloud platform;

wherein the first web worker proxy manager is further
configured to send the first command to access the first
web worker to a second web worker proxy manager on
the remote cloud platform upon determining that the first
web worker is located on the remote cloud platform; and

wherein the first web worker proxy manager is further
configured to receive a second command from the web
application or another web worker.

#* #* #* #* #*

10

16

